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The cluster variation method is reformulated with the aid of the M6bius inver- 
sion formula. 
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1. I N T R O D U C T I O N  

The cluster variation method is a method giving a series of approximations 
in the statistical-mechanical theory of lattice systems. It was invented by 
Kikuchi, ~1~ and a reformulation was presented by Morita. r Schlijper ~4) 
noted that the formulation due to Morita ~2'3) is related to the M6bius 
inversion formula. Considering this fact, An ~5) showed how the M6bius 
function plays an important  role in the formulation. In the present article; 
we rewrite the formulation given in ref. 3 by using the M6bius function. 
The terminology on the mathematics follows Rota. ~6) 

In Section 2, mathematical  terminologies and the M6bius inversion 
formula are given. In Section 3, the free energy in an approximation of the 
cluster variation method is expressed in terms of the reduced density 
matrices or distribution functions for clusters of lattice sites, with the aid 
of the M6bius inversion formula. In expressing the free energy in an 
approximation in Section 3, we consider two alternative choices for the set 
of clusters of lattice sites. In Section 4, we see that the expression obtained 
in Section 3 does not depend on the two choices. 

Department of Engineering Science, Faculty of Engineering, Tohoku University, Sendai 980, 
Japan. 

819 

00224715/90/0500-0819506.00/0 �9 1990 Plenum Publishing Corporation 



820 Morita 

2. A F O R M U L A  DUE TO M O B I U S  INVERSION F O R M U L A  

In the present  paper ,  we are concerned with part ial ly ordered sets, 
and, in part icular ,  with mathematical  finite lattices. A partially ordered set 
is such a set of elements that  any two elements ~ and fi are either com- 
parable,  namely,  related by one of the order  relations ~ ~< fl and fl ~< ~, or 
not  comparable .  A f ini te  lattice L is such a part ial ly ordered set of a finite 
number  of  elements that  there exist elements V S and A S of L for every 
subset S of  L. Here  V S and A S are called a least upper  bound  and a 
greatest  lower bound,  respectively, and satisfy the condit ions that  ~ ~< V S 
for all the elements ~ of S and, if fl is an element of L and ~ ~< fl for all the 
elements ~ of S, then V S ~< fi, and that  A s ~< a for all the elements of a of 
S and, if 7 is an element of  L and 7 ~< ~ for all the elements ~ of S, then 
7 ~< A S. If  S is a set of two elements ~ and fi, V S and A S  are denoted by 

v fl and ~ A fl, respectively. V L and A L are denoted by 1 and 0, respec- 
tively, so that  all the elements a of L satisfy 0 ~< a ~< 1. 

The  no ta t ion  fl >~ a is also used to represent  a ~< ft. The nota t ion  ~ = fl 
denotes that  ~ and fl are identical, so that  bo th  a ~< fl and fl ~< ~ are valid, 
and c~ < fl and fl > ~ denote  that  ~ ~< fl and c~ # ft. If  c~ < fi and there is no 
element 7 of L such that  e < 7  <f l ,  we say that  fl covers c~. An element 
covering 0 is called an atom, and an element covered by 1 a dual atom. 

We consider a finite lattice L. We assume that  a quant i ty  Q~ is 
associated with each element a of L. We then define Q~ such that  

Q~= ~ Q~ (1) 

This is possible since we have Q0 = Qo if we put  fl = 0 in (1), and if Q~ are 
determined for c~<p, then Q~ is equal  to Q ~ - ~ < ~ Q ~ .  The M6bius  
inversion formula  applied to (1) says that  

Q~= ~ Q~#(a, fl) (2) 

where #(e, fl) is the M6bius  function, which is defined for ~ ~< fl by 

#(c~, y) = 6 ~  (3) 
7 

(~<~</3)  

If we put  fl = ~ in (3), we see that  #(e,  ~) = 1, and then #(~, fl) for fl > e are 
determined recursively by #(e, fl) = -ZT(~  ~ ~ < ~) #(e, Y)- By substi tut ing (2) 
into the r ight -hand side of (1) and using (3), we confirm that  (2) gives the 
solution of (1). 
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If we choose a fixed ~ and then Q~ such that Q~ = 1 when/~ ~> c~ and 
0 otherwise, then ( ~  = 5.~ by (1), and (2) reads  

#(7, ,6) = 5~,6 (4) 
7 

By putting/~ = 1 in (2) and using the fact that kt(1, 1) = 1, we obtain 

Q 1 - Q ,  = - 2 Q~#(c~, 1) (5) 

Substituting (1) for/1 = 1 on the left-hand side, we have 

( ~  = - Z Q~/~(c~, 1) (6) 
c~<l c~<l 

(5) and (6) are the basic relations used in the formulation of the cluster 
variation method. 

3. CLUSTER VARIATION METHOD 

We consider a physical finite lattice and clusters of lattice sites on the 
lattice, which are denoted by c~,/~, 7, etc. If a cluster c~ is a subcluster of fl, 
we write :~ ~</~ or/~/> ct, and if ~ is a proper subcluster of/~, e </~ or/3 > c~. 
When c~ ~</? or/~ ~< c~, we say that e and/~ are comparable. We denote the 
clusters of all the lattice sites and of no lattice site by 1 and 0, respectively. 
We now see that ~< in this sense is an order relation and a set of clusters 
is a partially ordered set. We shall use the term finite lattice only to repre- 
sent a mathematical  one in the following. For  a set S of a number of 
clusters, we shall use notations U S and N s to denote the union and the 
intersection, respectively, of the clusters belonging to S, so that 

us=U NS=N 
teeS c~eS 

An approximation in the cluster variation method is specified by a set 
B of basic clusters 71, 72,-.., and 7k, which are chosen such that any two are 
not comparable and the union of all is the cluster of all the lattice sites, so 
that V B = U B = 1. We consider the set P of clusters 1, '/1, 72,..., 7k and all 
the subclusters of 7t, 72,..., 7k, including the empty cluster denoted by 0. 
This set is a finite lattice, where for a subset S of P, A S = N s, and V S 
is equal to U s or 1 according as U S is a subcluster of a cluster belonging 
to B or not. An (s) discussed the formulation by using the partially ordered 
set P' which is obtained from this finite lattice P by discarding 0 and 1. We 
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consider also the set Q defined as follows: a cluster ~ is an element of Q 
if c~ = 1, or ~ = 0, or c~ is an element of B, or c~ = 0 S for some subset S of 
B. This set Q is also a finite lattice; ~ / S  a n d / ~  S for a subset S of Q are 
given in the Appendix. The set Q\{0,  1} was suggested by Hijmans and 
de Boer 7 and adopted in ref. 3. 71, 72,..., 7k are dual atoms both in P and 
Q, and a cluster of only one lattice site is an atom in P and is an atom 
in Q if it is in Q. In the following formulation, we choose one of the finite 
lattices P and Q, and clusters c~, fi, 7 are assumed to belong to it, if not 
otherwise stated. 

We are interested in the free energy of the system on the cluster 1. The 
set of variables necessary to describe all the states of a system on a cluster 

is denoted by G. The Hamiltonian of the system on the cluster 1 is 
expressed as 

Hi(S1) = ~ /t~(S:~) (7) 
0<~<1 

discarding an uninteresting constant. The summation with respect to all the 
variables in so is denoted by try. When the summation is taken with respect 
to all the variables in sr excluding those in G,  it is denoted by trr The 
basic variational principle giving the free energy F~ of the system is 

F, = Min ~(p,(s,)) (8) 
pl(sl) 

where 

~ ( p l ( s , ) )  = E, - TS,  

E1 = trl  Pl(Sl) Hi(S1), 

$1 = - k s  trl  P l ( s I ) l np l (S l )  

(9) 

(10) 

(11) 

Here T is the temperature and k B is the Boltzmann constant. The minimum 
is taken with respect to the distribution function p~(sl) under the sub- 
sidiary condition 

trl pl (S1)= 1 (12) 

We introduce distribution functions P~(G) for 0 < c~ < 1 by 

P~(G) = trl\~ Pl(Sl) (13) 

We then obtain the consistency conditions among them: 

p~(s~)=tr~\~p~(s~), 0 < ~ < f l < l  (14) 
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By (12) and (13), we have the normalization conditions 

tr~ p~(s~) = !, 0 < ~ < 1 

By substituting (7) into (10) and then using (13), We have 

(15) 

E , =  ~ tr= p~(s=) H=(s~) (16) 
0 < ~ < 1  

We introduce S~ for ~ < 1 by 

S~= --kBtr~p~(s~)lnp~(s~) 0 < ~ < 1 ,  (17) 

and So=0.  We define S~ from S~ by (1). By using (5) and So=0,  we have 

s , = -  Y~ s=u(~,l)+S, (18) 
0 < ~ < 1  

We now consider a system for which the Hamiltonian is expressed as 
(7) with H~(sl)=0. Then (16) does not involve pl(s~). In the approxima- 
tion of the cluster variation method, we put S l = 0  and ignore the 
reducibility (13) of p~(s~) from p~(sl), retaining only the consistency rela- 
tions (14) and the normalization conditions (15). The variational principle 
in the approximation is now expressed as 

F,= Min ~{p~(s~)} (19) 
{p~(s=)} 

~t{p~(s~)}= ~ tLp=(s~)Er~(s~)+T ~ S~/~(~,I) (20) 
0 < ~ < 1  0 < a < l  

where the S~ are given by (17). The variations are to be taken with respect 
to p=(s~) for 0 < ~ < 1, under the subsidiary conditions (14) and (15). 

The first sum on the right-hand side of (18) is compared with (15) in 
An's paper, <5) where a~ appears in place of - / t (~,  1). Since An did not con- 
sider the element 1, he only obtained his relation (16'), but if it is compared 
with (4) for fl = 1, we see that a~ = -/~(~, 1) in the lattice P. 

4. E Q U I V A L E N C E  OF T H E  C H O I C E S  P A N D  Q 

In the preceding section, we could choose P or Q for the finite lattice 
of clusters of lattice sites. We now introduce the set R of clusters a for 
which 0 < ~ < 1 and/~(e, 1 ) #  0. We show that the set R and nonzero value 
of/~(cz, 1) for e e R do not depend on whether we choose P or Q at the 
outset. R is a subset of Q, and we have the same expression of the varia- 
tional function ~{p~(s~)} in terms of p~(s~) and/~(~, 1) with ~ belonging 
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to R, for both choices, provided that /~(s~) in (7) are chosen such that 
/q~(s~) = 0 if ~ ~ R. 

For  a pair of elements ~ and/? of a finite lattice L such that ~ ~</~, the 
subset of all the elements 7 satisfying e ~< 7 ~</? is called a segment [~, ~], 
that is, a finite lattice in which 0 = ~ and 1 = 8. The #(~,/3) is defined by 
(3), that is, 

/~(~, 7) = 6~  (21) 
Y (~<~</~) 

Calculating lt(~,/?) in the lattice L is equivalent to calculating #(0, 1) in the 
lattice [~,/?]. Hence we consider the segment [~, 1] in calculating #(e, 1). 

Methods of calculating the M6bius function #(0, 1) have been given.(6) 
Here we use one of them. 

A subset of elements %, el,..., c~, of L is called a maximal  chain 
stretched between cr o and e , ,  when e~ covers ~ 1 for every i satisfying 
l <~ i <~ n. 

A subset S of L is said to be a spanning subset if ~ /S  = 1 and A S = 0. 
A cross-cut C of L is a subset of L such that (1) C does not contain 

0 nor 1; (2) no two elements of C are comparable; (3) any maximal chain 
stretched between 0 and 1 contains an element of C. 

Cross -cut  Theorem.  Let C be a cross-cut of a lattice L. For  every 
integer k ~> 2, let qk denote the number of spanning subsets of C containing 
k elements. Then the M6bius function/1(0, 1) is given by 

~(0, 1 ) = q 2 - - q 3 + q 4 - -  + . . .  (22) 

We now choose P and assume that ~ is a cluster of P but not of Q. 
We consider the segment [~, 1]. We assume that 71,72 ..... 7m are the dual 
atoms belonging to it. We see that 71, 72,-., 7m form a cross-cut, and apply 
the cross-cut theorem by using this cross-cut. For  every subset S of the 
cross-cut, A S is equal to 0 S, which is an element of Q and hence is not 
equal to e. This means that there is no spanning set, and hence/z(c~, 1 )=  0. 
Using this fact in (21) with ~ = 1, we can easily see that #(~, 1) for a cluster 

belonging also to Q takes the same value as in the finite lattice Q. 

A P P E N D I X .  Q IS A FINITE LATTICE 

We give A S and k / S  for each subset S of Q. We first consider the 
case that S consists of n elements which are expressed as 0 B i=  (']~B,7, 
respectively, for i = 1, 2 ..... n, by subsets Bi of B. If we denote the union 
and the intersection of the sets B1, B2 ..... B , ,  by B' and B", respectively, 
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then B' = U~=I By ~ Bi = B" - -  n ; = l  Bj, SO that N B' ~< N Bi ~< N B" for 
i = 1 , 2  ..... n, and 

AS=NB', V s = n  B" 

We note that AS = N S. If S involves 0 in addition,/~ S = 0 and V S does 
not change by the presence of 0. If S involves 1, then V S = l  and 
AS=NS. 
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